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A simple model is useful to understand the formation and persistence of radially elongated structures
!streamers" in electron temperature gradient !ETG" driven modes. The ETG model is very similar
to the thermal Rossby wave model, a system of broad interest. The detailed correspondence of these
two models is discussed. Streamer formation in this simple model is analyzed using the
modulational stability method. In the inviscid limit of the model, an amplitude equation similar to
the nonlinear Schrödinger equation !NLS" is derived. This equation has a second derivative cubic
nonlinearity and is identified as a special case of a more general higher order NLS. Analytical
solutions are found in the form of travelling waves and a localized thorn. Using the Lagrangian
structure of the amplitude equation, it is shown that one-dimensional collapse in the poloidal
direction is possible in this system for certain parameter values, and for sufficiently localized inital
flow. This identifies a parameter regime basin in which there is an attractor with the structure of a
thin extended streamer. In the viscous limit, another amplitude equation, which is a certain special
case of the generalized complex Ginzburg–Landau equation, is obtained. Fixed points of the
corresponding dynamical system are identified and their stability is investigated. © 2004
American Institute of Physics. #DOI: 10.1063/1.1637920$

I. INTRODUCTION
A. Motivation

Understanding the formation of large scale structures is a
major challenge for predicting particle and heat transport in
tokamak devices. Although computers can simulate these
structures by computing n-particle interactions from first
principles, we still need insight gained from basic explana-
tions and simplified physical pictures to understand the phe-
nomena that are observed in simulations. In this sense, a
secondary instability analysis may prove useful in gaining
insight in to the nonlinear behavior of the electron tempera-
ture gradient driven !ETG" modes.

The ETG mode1,2 is one of the possible explanations of
the observed high level electron transport in tokamaks. It is a
quasifluid electron mode, with dynamics akin to the ion tem-
perature gradient driven mode !ITG" !Ref. 3" (k!% i!1,ñ
"n#e&̃/Ti). Streamers, which are large scale structures
(qy$ky) that arise from dynamical instabilities driven by
underlying small scale turbulence, have been observed in
some of the computer simulations4–6 of both modes. They
correspond to the radially elongated limit (qy!qx), of a
more general class of structures called convective cells.7
Thus, streamers are the opposite limit of zonal flows which
are elongated in poloidal direction !i.e., qx!qy). However,
similar structures may arise, also as a result of the anisotropy
of the linear instability.

In this paper, we explore modulational instability of
streamers, in ETG turbulence using the thermal Rossby wave
!TR" model. Thermal Rossby waves8 are Rossby waves

!similar to drift waves, see for example Ref. 9", driven un-
stable by buoyancy forces !similar to magnetic drifts", and
stabilized by the '-effect !analogous to the diamagnetic fre-
quency and diamagnetic stabilization". Thus, the structure of
the TR intabilities is quite similar, indeed, to that of toroidal
ETG/ITG modes. Therefore, they are a natural, ‘‘simplified’’
model for study of nonlinear ETG/ITG physics. A fundamen-
tal difference is the structure of dissipation. Viscosity plays
an important role in Thermal Rossby waves, but ETG modes
are primarily inviscid !see Table I for the correspondance
between ETG and TR waves".

Large scale structures in these systems form as a result
of coherent interaction of nonlinearly driven large scale
flows and small scale ETG/TR fluctuations. Usually, it is
local interaction !in k space" of small scale modes, which
have a natural cut-off scale of order %e!Ti /Te, that are re-
sponsible for the mode coupling in cascade models. This is
similar to avalanche formation through coupling of neighbor-
ing sites in models of cellular automata.10

In this paper, we limit ourselves to discussion of
streamers.11 The streamer paradigm is a possible explanation
of the notion of extended cells and avalanches observed in
gyrokinetic simulations.12 It helps explain the excess of elec-
tron thermal transport, via bursty large scale events. Al-
though streamers may also be a manifestation of the linear
instability structure, their persistance in nonlinear regime
motivates nonlinear stability calculations. Extended struc-
tures observed in geophysical systems, in the form of strato-
spheric intrusions into the troposphere,13 may also have a
similar origin.

The approach employed in this work does not explain
how the turbulent structures become quasi-one-dimensionala"Electronic mail: ogurcan@physics.ucsd.edu
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in the first place. Rather, it concentrates on ‘‘formation’’ of
large scale structures, from small scales, via quasi-one-
dimensional modulations. Using such special forms of
modulations makes sense, especially in the context of the
dynamics of collapse, or for the later stages of formation, in
which the initial isotropy of the seed fluctuations is already
broken and there is a selected direction for the modulations.
Apparently, the modulations become one dimensional if the
initial conditions and the parameters are in an effective ‘‘ba-
sin of attraction’’ of the streamer, or zonal flow configura-
tions. Initial direction and localization of the ‘‘seed’’ modu-
lations, as well as the signs of poloidal and radial dispersions
are important for the choice of configuration. The stage of
formation of streamer, or zonal flow from initially isotropic
two-dimensional modulations, will be investigated in detail
in a forthcoming article.

The purpose of this work is to elucidate the general
mechanism responsible for the formation and stability of
streamers and attempt to answer questions such as: ‘‘are
streamers robust secondary structures?’’ which requires in-
vestigation of the role of nonlinear dynamics, and especially
that of collapse. Such an investigation will clarify if there

exists or not, a strong nonlinear tendency toward the forma-
tion of the streamer as a singular shear layer. To accomplish
this, a simple aproximation to the large scale ETG dynamics,
which takes nonlinearity into account, is derived and analyti-
cally investigated. Understanding the behavior of such
simple approximations, given that they do not physically
contradict the initial model, is necessary !but not sufficient,
of course", for understanding the behavior of the real, com-
plex physical system.

The basic models of ETG and TR turbulence are intro-
duced in Sec. I, together with a very brief review of the
perturbation method. In Sec. II, we apply the method to a
subcritical primary mode, for which we take the inviscid
limit. For this limit we derive the relevant amplitude equa-
tion. In Sec. III, and its first three subsections, this equation
is solved in various forms. In Sec. III D the Lagrangian struc-
ture of the amplitude equation is investigated and conditions
for wave collapse are found. The collapse criterion estab-
lishes a regime in which a thin, extended streamer cell is a
robust attractor for secondary instability. In Sec. IV, we con-
sider a marginally unstable primary mode, with the viscous
model equations, and derive an amplitude equation for this
limit. In Sec. V we write down a dynamical system model,
for this equation, and investigate basic equilibrium and sta-
bility of this dynamical system. Section VI contains conclu-
sion and discussions. The Appendix lists the coefficients of
the amplitude equations that are derived.

B. Background

The free energy source for the ETG mode is the electron
temperature gradient. The dynamics of the simple plane
model of toroidal ETG mode can be described by a set of
reduced fluid equations, which include viscosity and thermal
diffusivity as simplified models of dissipation,
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TABLE I. A summary of analogy between thermal rossby waves and drift-
ETG modes.
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ẑ&)Pe
neB

Effect of temperature gradient: Background diamagnetic drift:
dT0
dx ,*e"%e!/e

1
Pi0

dPe0

dx ŷ
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are the background gradient scale lengths. Viscosity, and
thermal diffusivity are also nondimensionalized in accord
with the space–time scaling that is used, i.e.,
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Here the primed coordinates are the actual coordinates that
has their corresponding dimensions, and %e is the electron
Larmour radius and /e"Ti /Te is the ratio of ion to electron
temperatures. This is the scaling that is used, mainly for the
inviscid limit, which is obtained by taking the limit 5+,*6→0.

Similarly, the free energy source for the TR mode is the
temperature gradient acting via buoyancy forces. It is a ro-
tating convection model, which is usually employed for labo-
ratory experiments in a rapidly rotating cylindrical annulus.14
These experiments are motivated by the problems of under-
standing the Jovian Great Red Spot and band structure, as
well as other geophysical applications. In analogy with at-
mospheric Rossby waves, we also include a term similar to
change of density due to divergence of the polarization drift.
Physically it corresponds to potential vorticity evolution in
the quasigeostrophic approximation,

!( t# ẑ&)7•)"!1#)2"7%4*(y7#R(y1%)47"0,

P!( t# ẑ&)7•)"1#)21%(y7"0.

These are, the equations of vorticity and entropy written in
terms of stream function 7 and thermal fluctuations 1. Here
R and P are Rayleigh and Prandtl numbers, and 4* is the
rotation parameter.

Large scale structure formation in this model will be
discussed using mean field theory, in which the mean flow
and the fluctuations are seperated by taking &"&̄%&̃ and
P" P̄% P̃ . Here (•) is the corresponding field, averaged over

rapid dynamical scales, and (• )̃ is the fluctuating deviation
from that mean. We assume that the dynamics of both the
small scale waves !i.e., ETG/TR fluctuations" and the mean
field, are described by the same model equations. This is
valid for the TR mode. For the plasma case, on the other
hand, this is a nontrivial assumption. For the ETG, it corre-
sponds to assuming an adiabatic ion response for the flow as
well as fluctuations. While valid for ETG when k!% i!1,
such an approximation is invalid for the ITG mode where the
electron response to the flow is nonadiabatic. This is one of
the main differences from the prior work of Champeaux and
Diamond11 on the envelope equation approach to secondary
modulations, in which the fluctuation dynamics !Hasegawa–
Mima equation" are modelled differently from the mean,
zonal flow dynamics !Euler equation, driven by Reynolds
stress". In that case the electron response is Boltzmann for
the drift waves, and non-Boltzmann for the mean flow. In the
simple mean field picture, fluctuations in the form of ETG or
TR waves are considered to be advected by the mean flow,
and the mean flow is driven by the Reynolds stress generated
by the small scale ẼÃB !geostrophic" motion, i.e.,

( t!1#)2"&̄%(y!&̄% P̄ "%*)4&̄" ẑ&)&̃•))2&̃, !3"

( t P̄#r(y&̄#+)2P̄% ẑ&)&̃•) P̃"0. !4"

We restrict ourselves to consideration of modulations of
quasi monochromatic waves, i.e., waves of the form

&̃"&! X̄ ,T̄ ,/"ei!k"x̃#8 t̃ "%c.c., !5"

where the complex amplitude changes on scales slower than
the fluctuations, for which the general linear dispersion rela-
tion,

82!1%k2"#8ky%rky
2#+*k6

%ik2!+!8!1%k2"#ky"%*k28""0

has two roots

8'"
ky

2!1%k2"
!1'!1#4r!1%k2""

in the inviscid limit. For the inviscid limit, linear stability is
determined by the interplay between different types of ad-
vection, represented by the value of the parameter r for each
wave number. For this limit we assume the linear mode is
either stable or saturated or that the linear growth is slower
than the nonlinear growth. This restriction is imposed in or-
der to isolate nonlinear dynamics. Notice that as ,*e,B→0
!i.e., no ETG limit", 8% turns into the inviscid drift wave
frequency, and 8# vanishes. On the marginal stability curve
8%"8# , and above the marginal stability curve the 8#

branch decays, while the 8% branch grows.
The back reaction of the flow on the fluctuations may be

treated as a perturbation to the linear dispersion relation. The
nonlinear problem with coupled fields may be reduced to a
single equation for a single field by neglecting nonlinearities
involving second and higher order derivatives of the mean
fields,

L&̃%N!&̄, P̄ "&̃"0. !6"
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To construct a quasilinear theory taking the dominant non-
linear effects into account, we need to choose an expansion
of the fields such that the slow dynamics of the fluctuation
amplitude is of the same order !in order parameter ," with
these nonlinearities. This is a well known approximation
method15 in fluid dynamics. In practice, the expansion of the
dynamical variables,

x" x̃%,#1X̄⇒)")̃%,)̄ ,
!7"

t" t̃%,#1T̄%,#2/⇒( t" (̃ t%,(̄T%,2(/ ,

can be regarded as a Taylor series expansion of the operator
L, around the point ()̃ , (̃ t) to a neighboring point ()̃
%,)̄ , (̃ t%,(̄T%,2(/) in the operator space. The zeroth order
term, in this expansion, L0"L(ik ,#i8)"0, corresponds to
the linear dispersion relation, and the first order term,

L1"" (L0!)̃ , (̃ t"
(! (̃ t"

(̄T%
(L0!)̃ , (̃ t
(!)̄ "

•)̄ #
"
(L0! ik,#i8"

(!#i8" ! (̄T%vg•)̄ " !8"

corresponds to group motion and can be eliminated by trans-
forming to the group velocity frame. As a result, the pertur-
bative feedback of the mean flow on the fluctuations, can be
written as a deformation of the wave packet as it travels with
its group velocity, i.e.,

L2&%N!&̄, P̄ "&"0. !9"

This can be written as

5i!(8L0"(/%!1/2"!(8L0"!(k•)"28!k "%N!&̄, P̄ "6&

"0. !10"

II. INVISCID LIMIT

The inviscid problem may be written in a compact form
as in !6"

L"( t#( t!1#)2"%(y$%r(yy ,

N!&̄, P̄ "")•# ẑ&)̄&̄!( t!1#2)2"%(y"% ẑ&)̄ P̄(y$ ,

with an expansion of the dynamical variables as in !7". We
will denote the slow modulation simply by ) from this point
on, since )̃ becomes ik, when it acts on the quasiharmonic
wave !5". The first term, in the expansion of the linear op-
erator L, is the dispersion relation L0&̃"##82(1%k2)
#8ky%rky

2$&̃"0. We can pass to the group velocity frame
((T→#vg•)) to eliminate L1 as described before. Then, the
modulation of the wave packet in a frame of reference mov-
ing with the group velocity, is described by

5i!(8L0"(/%!1/2"!(8L0"!(k•)"28
##!8!1%2k2"#ky")&̄#ky) P̄$& ẑ"k6&"0. !11"

For the inviscid limit we pick a monochromatic wave, for
which P̃k"#(rky /8)&̃k , as the zeroth order primary wave
solution. This choice corresponds either to a linearly stable
mode, in which case it needs to be driven by other modes, or

more likely to a saturated most unstable mode at mixing
length levels for which the nonlinear growth has become
large compared to the linear growth. Then we expand the
fields as,

&̃"&̄0%,&̃1%¯ , !12"

&̄"!,&̄1%,2&̄2%¯ ". !13"

Notice that &̃09O(1) implies e&/Ti9O(,*i)
9O(!/e%e /Ln), which correspond to a finite but small am-
plitude ordering for the electrostatic potential. Indeed, this
ordering sets the primary fluctuation level of order the mix-
ing length prediction. However, in this expansion, as ,→0
the solution does not vanish. Instead, the exact, unmodulated
travelling wave solution, &"(&0ei(k"x#8t)%c.c.), with P0
"#(rky /8)&0 is recovered. This is possible because both
Reynolds stress nonlinearities in the model vanish for a trav-
elling wave solution of this form. The expansion that we
employ perturbs this exact solution by introducing a slow
spatial and temporal dependence on its amplitude, and sep-
erating P and &. Then the correction to the vorticity and
thermal transport due to these modulations are Reynolds
stress and the advection of pressure nonlinearities,

ẑ&)&̃•))2&̃"2!k•)"! ẑÃk•)"%&%2, !14"

ẑ&) P̃•)&̃"#
rky
82

! ẑÃk•)"" (T%
8

ky
(Y # %&%2, !15"

where, & on the right-hand side is the complex amplitude of
the fluctuation part defined in !5". It is usually accepted that
the term !14", results in large scale structure formation via
inverse cascade. Recent investigations10,16 of the term !15",
on the other hand, point to the possibility of large scale struc-
ture formation via this term. This may be relevant to our
study !especially for the viscous case" because it is this sec-
ond term, which arises from the phase difference between the
two fields, that is the dominant nonlinear drive for the vis-
cous case. These expressions for the Reynolds stresses can
be used to write the mean field equations,

!,(/#vg•)"&̄%(Y!&̄% P̄ ""2! ẑÃk•)"!k•)"%&%2,

!,(/#vg•)"P̄#r(Y&̄"
rky
82

! ẑÃk•)"" vg# 8

ky
ŷ#

•)%&%2.

Taking the streamer limit !i.e., (X→0) simplifies these
equations considerably. It should be noted here that the time
dependence of the mean flow can be neglected for a modu-
lational stability calculation, in which the mean flow is
slaved to small scale dynamics. However, it cannot be ne-
glected when the streamer growth is absolute !i.e., 2str
:vg"q). The result is similar to the subsonic limit of the
Zakharov model of Langmuir turbulence. Thus dropping
time dependence we can solve for &̄ and P̄ , and obtain

&̄"#
r!kyvgy#8"%2kyvgy82

!vgy#v-%"!vgy#v-#"8
2 kx(Y %&%2, !16"
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P̄"
2rky82%!1#vgy"r!kyvgy#8"

!vgy#v-%"!vgy#v-#"8
2 kx(Y %&%2. !17"

Here v-' are the phase speeds in the long wavelength limit,

v-'" 1
2!1'!1#4r ".

Substituting !16" and !17" into !11" we get the evolution
equation for the complex wave amplitude,

i(/&%'(YY&%;(YY! %&%2"&"0. !18"

This is a derivative nonlinear Schrödinger equation, with a
cubic second derivative nonlinearity. Here ' is

'<
1
2
(28

(ky
2 .

This equation is second order in ,. Notice that the nonlinear-
ity may be either attractive or repulsive depending on the
sign of ;/' !see Appendix for ;". Figures 1 and 2 depict

="#2;/' as a function of physical parameters r, kx , and
ky . White regions in these graphs correspond to the case
when the nonlinearity is attractive. In particular, it is possible
to recognize the blade-like region, which starts around ky
91 in the 8% branch, in both figures. Physically, the attrac-
tive case corresponds to enhancement of the amplitude via
backreaction of mean flow, since the generated mean flow is
in a direction that advects the fluctuation dynamics in such a
way that it enhances them in the region where the fluctuation
amplitude is larger. It is similar to the instability structure
leading to the formation of the modon from similar modula-
tions in two dimensions. In the repulsive case on the other
hand, the nonlinear effect is reversed, the generated flow is in
a direction which advects the fluctuations in a way to dis-
perse them further. The nonlinear term in !18", which in-
volves the curvature of the intensity field is responsible for
the attraction. Thus, the collapse mechanism can be identi-
fied as an attraction towards the region of largest intensity

FIG. 1. Contour plots of the dimen-
sionless function ="#2;/' as a func-
tion of r vs ky with kx"0.2 fixed. Fig-
ures on the left and right correspond to
8% and 8# branches, respectively.
White regions indicate larger values of
=, and instability to infinitesimal per-
turbations.

FIG. 2. Contour plots of the dimen-
sionless function ="#2;/' as a func-
tion of ky vs kx. !a" 8% mode with r
"0.05, !b" 8# mode with r"0.05, !c"
8% mode with r"0.1, !d" 8# mode
with r"0.1.
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curvature !i.e., the turning point", being unbalanced by the
linear dispersion. This causes more intensity field, to accu-
mulate near the turning point making it sharper and more
effective, which draws more of the intensity field eventually
leading to collapse.

At this point it should be pointed out that having two
roots in the dispersion relation, and possibility of resonant
interaction #enhancement of ; due to resoncance vgy"v-'

%=v(,)] complicates the issue. In each of these cases, how-
ever, there is at least one particular ordering that leads to the
same amplitude equation. Physically, this corresponds to the
ordering at which the effect of linear dispersion !for either
8% or 8#) is comparable to the dominant nonlinearities.

III. PHYSICAL SOLUTIONS
A. Linear solutions

Unlike the cubic NLS, !18" has exact linear solutions,

&"A0 , !19"

&"A0ei!KY#./", !20"

where the latter one represents the envelope travelling as a
wave, with the dispersion relation ."'K2, which is in fact
the second term in the Taylor series expansion of 8(k). Lin-
ear stability of these solutions to small amplitude perturba-
tions is a measure of stability of the initial linear quasi har-
monic mode. This is mainly determined by the amplitude.
For instability,

2;A0
2(#' .

Defining m<#2;A0
2/' , which measures the relative impor-

tance of nonlinearity compared to linear dispersion, it is m
)1. Figures 1 and 2 are contour plots of ="#2;/' as kx ,
ky , and r are varied, hence these contours also depict the
stability boundaries as the amplitude A0 is varied.

B. Nonlinear solutions

Besides finite amplitude linear solutions, there are non-
linear solutions of the amplitude equation !18". These solu-
tions may give insight into what sorts of one dimensional
structures are possible in ETG turbulence. To find those, we
take & to be of the form,

&"A!Y#v/"ei-!Y#v/"#i./

and get two coupled ordinary differential equations corre-
sponding to real and imaginary parts of the initial partial
differential equation !18". One of these can be solved for -!
as a function of the amplitude,

-!!>""
v
2'#

C

A!>"2
. !21"

Here (><Y#v/) and C is an arbitrary integration constant.
We shall set C"0, which corresponds to uniform frequency
shift. This problem can also be tackled for arbitrary C, how-
ever the results are complicated and do not provide furhter
insight. The real part of !18", may be integrated, with the use
of !21", yielding

A!!>"2" 1%2
;

'
A!>"2#%NA!>"2%C2A!>"#2"H ,

!22"
where N"v2/4'2%./' , and H is another integration con-
stant related to the energy. By plotting contours of the func-
tion H(A ,A!), one may observe the behavior of solutions in
the phase space for various values of energy. Both N and ;/'
can be positive or negative. These cases should be consid-
ered separately.

1. Case 1: NÌ0, ! Õ"Ë0 (attractive)
Coefficients in !22" can be absorbed into A and >, to give

A!2!1#A2"%A2"& 2;'N&H"m . !23"

Using the transformation A"!m sin- it is possible to solve
!23" implicitly,

>"'
0

-
d-!!1#m sin2 -!"E!-%m ", !24"

where m)0. This is the expression for the elliptic integral of
the second kind. Let

sm!>"<sin!E !#1 "!>%m ""

be the inverse of the elliptic integral of the second kind, in
the same sense as the Jacobi elliptic function sn(>%m) is the
inverse of the elliptic integral of the first kind. Strictly speak-
ing, this is not a well behaved function in certain parts of
parameter !i.e., m" range. We introduce it for notational sim-
plicity. It is useful to define the counterparts to this function,

cm!>"<cos-!>",

dm!>"<
1

!1#m sin2 -!>"
.

Using the definitions, various relations between these func-
tions may be obtained,

sm! !>""dm!>"cm!>",

cm! !>""#dm!>"sm!>",

dm! !>""mdm
4 !>"sm!>"cm!>",

sm!>"2%cm!>"2"1,

dm!>"2#msm!>"2dm!>"2"1.

The solution sm(>) #or rather the intensity sm(>)2] can be
determined numerically !see Fig. 3" as well. Physically, these
solutions represent the one-dimensional limit of a convective
cell. For example, the flow profile in Fig. 3!c" looks like a
radially elongated version of a series of dipole solutions. As
expected, total wave momentum is conserved in these types
of flows. It is also noteworthy that !24" is the same expres-
sion, which gives the arclength of an ellipse of eccentricity
m, written in terms of -, the complement of the parametric
angle.

The solution for the amplitude may be written in the
compact form as,
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A!>""!H
N sm!!N!>#>0""

in terms of unscaled initial variables. The wavelength of
which is,

?"4E!m "/!N ,
where E(m) is the complete elliptic integral of the second
kind.

Notice that ?→20/!N , as m goes to zero. This is same
as the ‘‘linear’’ modulated solution, given in !20". Since
E(m)0)(0/2, as the amplitude increases, so does m, yield-
ing a smaller wavelength.

The shape in Fig. 3!c" corresponds to the indefinitely
thin ellipse. It could also be derived by setting (YY&"0 in
!18" as,

&"'! 1
2; ".%

v2

4' # !Y#v/"ei!!v/2'"Y#!.%!v2/2'""/".

This is a linearly increasing or decreasing solution which
must turn around in a ‘‘mixing layer’’ of sorts that occurs
when the amplitude is large enough !i.e., at A2"#'/2; ,
corresponding to m"1). The point at which the function is
not smooth corresponds to a small scale turbulent flow re-
gion at which the perturbation expansion breaks down.

2. Case 2: NÌ0, ! Õ"Ì0 (repulsive)

Equation !23" takes the form

A!2!1%A2"%A2"m , !25"

which has periodic solutions, as can be observed from Fig.
4!a". The solution is written in compact form as

A!>""!H
N s#m!!N!>#>0"",

where

FIG. 3. The solution sm
2 (>) for the envelope intensity !solid line" and the mean flow V̄" ẑ&)&̄"# x̂(Y&̄ !dashed line" for !a" m"0.2, !b" m"0.8, !c" m

@1.0, !d" m"0, !e" m"#5, and !f" m"#20.
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s#m!>"<sin!E !#1 "!>%#m "".

3. Case 3: NÌ0, ! Õ"Ë0 (attractive)
We can write the scaled equation for this case as

A!2!1#A2"#A2"m .

The phase portrait of this equation #i.e., Fig. 4!c"$ displays a
separatrix at m"0. To understand the behavior of the solu-
tion on this separatrix, we let m"0 and solve the resulting
equation implicitly,

A2"sech2!!1#A2'>" !26"

which can be verified by direct substitution. One can exploit
the iterative structure of !26" to visualize intensity !see Fig.
5". Notice that this solution is localized !i.e., A→0, as >→0",
and we choose the combination of signs so that the deriva-
tive diverges at the origin #correctly so, since A!2(1#A2)
"A2, A!→A as A→1, which occurs at the origin$. This
localized ‘‘thorn’’ solution may be thought of as a soliton of
sorts. The stability properties of this solution should be ana-
lyzed further. Notice that our perturbation expansion breaks
down around the origin, so if such a solution is to exist, it has
to involve dissipative processes !i.e., small scale turbulence"
in a mixing layer type region.

The mixing layer idea, is similar to solving the problem
with a source located at the origin as a boundary condition.

This solution produces infinite shear at the origin, which is
unphysical. In reality, this leads to turbulence near the inflec-
tion point. However, this ‘‘tendency’’ might have relevance
in the context of shear layer formation.

We ignore the case N(0, ;/')0 #Fig. 4!d"$, which cor-
responds to repulsive nonlinearity, as it is unphysical.

C. Mean flow profiles

Using !16", the mean field for the periodic solutions may
be calculated, and is

FIG. 4. The phase space plots for the cases !a" N)0 and ;/')0, !b" N)0 and ;/'(0, !c" N(0 and ;/'(0, and !d" N(0 and ;/')0.

FIG. 5. The localized solution which is not smooth at the origin !i.e., thorn",
corresponding to the separatrix of Fig. 4!c".
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&̄"C!k "(Y %&%2"2C!k "sm!>"cm!>"dm!>",

where C(k) is the constant in !16". The mean flow can then
be written as,

V̄"2C!k "dm
2 !>"#dm

2 !>"cm
2 !>"#sm

2 !>"$ x̂

which is already plotted in Fig. 3. Notice that the flow direc-
tion depends on the sign of C(k).

The mean flow for the thorn solution seems to have van-
ishing width. In fact the relation between flow and fluctua-
tion amplitudes is not strictly valid around this layer, to a
width of order a few %e!/e, and some dissipative or turbu-
lent behavior should be expected as a result. The simplest
way to resolve this layer would be to introduce dissipation
and transform to stretched variables to perform a perturba-
tion expansion. This amounts to treating the region around
x"0 as a turbulent boundary layer.

D. Lagrangian structure of Eq. „18…
The equation describing the evolution of the drift ETG

fluctuation envelope has a Lagrangian structure. The La-
grangian density for the case ; /')0 #corresponding to Figs.
4!b" and 4!c"$ is

L"
i
2 !&*(/&#&(/&*"#%(Y&%2% 1

2!(Y! %&%2""2.

Nonlinear Schrödinger !NLS" type amplitude equations, with
real nonlinearity, conserve total wave intensity,

( t%&%2%(YJ"0.

Here J"i(&(Y&*#&*(Y&) is the usual Schrödinger cur-
rent density. The total Hamiltonian,

H"' HdY"' # %(Y&%2# 1
2!(Y! %&%2""2$dY !27"

and wave momentum are also conserved,

( tJ%(YS"0,

where S"4%(Y&%2%(YY(%&%2%%&%4)#3((Y(%&%2))2 is the
radiation pressure. The intensity field variance, which is a
positive definite quantity related to disturbance width, can be
defined as:

V"' %&%2Y 2dY .

Using the virial theorem,17

d2V

dt2
"2' SdY"8H#2!(Y! %&%2""2

we conclude that if the nonlinearity is attractive and the ini-
tial mean field (((Y(%&%2))2B&̄2) is strong enough, the
width of the wave packet vanishes in finite time. Since the
total intensity is conserved, as the width goes to zero, the
amplitude must diverge! Thus, within its domain of validity,
and given ; /'(0 and H(1/4((Y(%&%2))2, the model pre-
dicts spectral collapse. This suggests a natural tendency to
generate radially extended, singular shear layers in ETG/TR

turbulence. Why the initial disturbance can be treated as
quasi-one-dimensional is a seperate issue and will be dis-
cussed in detail in another paper.

The actual picture of the wave collapse in ETG is more
complicated. As the collapse starts, a very small shear layer,
with a very large mean flow starts to form. Then the shear
flow acts on the small scale modes, and modifies them non-
perturbatively via shearing feedback. Thus, the collapse of
streamer flows is possibly ‘‘self-healing.’’ This self-healing
behavior is thus a possible origin of the intermittency in
streamer dynamics. Self-healing tendency after spectral col-
lapse indicates cyclic behavior of the streamer at collapse
time scales which can be estimated to be around the collapse
time of the corresponding NLS #i.e., tc@(1/2)!V/H], how-
ever it is also possible that this small scale shearing feedback
mechanism does not lead to self-healing, in which case large
bursty events of large transport may occur.

IV. VISCOUS CASE

The effects of dissipation may be important on relatively
small scales, or over a long time. The important caveat to
note here for the plasma case is that these scales should be
larger than the gyroradius scale for self consistency. The
scalings

t"
t!*!

%e
2/e.e

,

&"
e&
Ti0

%e
2/e.e

*!
↔#7 ,

P"
1

P,*e
P
Pi0

↔1 ,

P"
*!
+!
,

R"
,B,*e
+!*!

%e
4/e
2.e

2

and

S"
,*i
*!

%e
2/e.e↔4*,

bring these scales into focus. Notice that primed variables are
the actual coordinates that have their corresponding dimen-
sions, and the parallel with the TR notation is denoted by
double sided arrows. In the TR model such normalization is
already implicit, therefore, the scalings that are used for the
‘‘viscous’’ ETG mode, facilitate a one to one correspondance
to the ‘‘meteorological’’ notation. The viscous problem in
rescaled form,

( t!1#)2"&%S(y&%R(yP%)4&" ẑ&)&•))2& ,
P!( tP% ẑ&)&•)P "#(y&#)2P"0

may be restated as
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L"!P( t#)2"!( t!1#)2"%S(y%)4"%R(yy ,

N!&̄, P̄ ""#P#Rky) P̄%!8!1%2k2"

#Sky%ik4!1%P#1"")&̄$& ẑ"k

and has the linear dispersion relation,

!P8%ik2"!8!1%k2"#Sky%ik4"%Rky
2"0.

We can easily identify the most unstable mode for the vis-
cous problem, and make a formal expansion into the unstable
region. Here the marginal stability curve is given by

R0"
S2k2

!k2%P#1!k2%1 ""2
%
k6

ky
2 . !28"

The marginal stability curve, for a fixed value of kx !presum-
ably small", is shown in Fig. 6.

The dynamical variables are expanded as in !7", the
fields, however, are expanded as:

&̃",1/2&̃1%,&̃2%¯ ,

&̄",&̄1%,2&̄2%¯ .

Since the scaling of the field variable & is different from the
inviscid case, a different expansion is expected. This may be
considered as resolving the viscous mixing layer. Comparing
the scaling to the inviscid case and assuming that e&/Ti , the
physical field is the same order in both cases, yields

%e
2.e/e
*!

%e!/e
Ln

*,1/2,

which makes sense as long as * is not vanishingly small. The
average Reynolds drive up to order ,2 become

#!(T%S(Y "&̄"R(Y P̄ ,

(TP̄#P#1(Y&̄"#
2P2kyk2

82%P#2k4
ẑÃk•)%&%2.

That is, the response of the mean pressure to the pondero-
motive drive behaves like a driven wave, when the amplitude
is small, but not vanishingly small.

In a manner similar to the inviscid case, the expansion
may be represented as a Taylor series expansion of the linear

operator. The central difference is that the stability parameter
is also expanded into the region of instability, i.e.,

R"Rc!1%,2C", !29"

where C is deviation from marginality, Rc is the minimum
value of the marginal stability curve !28". Now the Taylor
series expansion of the operator, which also depends on the
stability parameter, turns into an expansion from the point,
()̃ , (̃ t ,Rc) to the neighboring point ()̃%)̄ , (̃ t% (̄T
%(/ ,Rc(1%,2C)). Dropping the bars on the modulational
operators, the straightforward procedure yields the evolution
equation for the complex amplitude,

( i(/% 1
2 " (28

(ky
2#ky

2!W%iD"
d2R

dky
2 # (YY#ky

2RcC!W%iD"

%!W%iD"!'%i="(Y %&%2)&"0. !30"

This equation is a special case of the generalized com-
plex Ginzburg–Landau equation.18 The term that is propor-
tional to C represents linear growth and frequency shift due
to the deviation from the marginal stability curve. The con-
stants are given in the Appendix, and W and D are directly
proportional to linear growth and frequency shift. Notice that
the dispersion term also has a contribution coming from the
change of the stability parameter. The last term, depending
on the sign of ' and =, represents either nonlinear growth or
damping. Remarkably, a particular real limit of this equation,
!namely, W$D , Rc$1 and =$'" which also corresponds to
the equation for dissipative zonal flows !see Ref. 11" has a
form which is invariant under the Talanov ‘‘self-focusing’’
transformation.19 This implies that if any localized solution
to this equation is found, a self-focusing version can also be
constructed.

V. DYNAMICAL SYSTEM ANALYSIS

To analyze the equation,

i(/7%!;%i'"(YY7%!8%i2"7

%!=%i4"(Y! %7%2"7"0, !31"

where the Greek letters are generic constants unrelated to the
constants used in previous sections, we concentrate on trav-
elling solutions,

7!Y ,/""A!>"e#i!.#8"/%i-!>".

Substituting this into !31", and defining

q<-!⇒q!"-",

K"
A!
A ⇒K!"

A"
A #K2,

we get a dynamical system18 with a pseudotime variable >,

q!"
1

;2#'2
#;!2#vK%24KA2"

#'!.%vq%2=KA2"$#2Kq ,

FIG. 6. Marginal stability curve of the primary modes, showing marginal
stability parameter vs wave number, around the minimum of which the
expansion will be performed.
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K!"
#1

;2%'2
#'!2#vK%24KA2"

%;!.%vq%2=KA2"$#q2#K2,

A!"KA .

Two fixed points of this system with nonvanishing am-
plitude are K"0, q"'(2/')1/2, where v"'(;2
#'.)!'2 , with same signs for q and v . Notice that the
fixed point is independent of the amplitude, therefore the
field at the fixed point may have any amplitude. If we con-
centrate on the nontrivial fixed point !picking all parameters
positive as an example" as long as 'v/(;2%'2))0 and
2q*(;v/(;2%'2) !where q* is the ‘‘fixed point,’’ or the‘‘frequency of the fixed oscillation’’" the point is a stable
one. In such a case, the amplitude remains constant against
infinitesimal background perturbations. The opposite case
will correspond to tertiary instability. Since the stability re-
quires the structure to move with a certain fixed velocity, v
may also be interpreted as a dynamical variable of sorts. To
determine the stability of a particular physical system, the
parameters in !31" should be calculated !see the Appendix",
and the analysis above should be repeated for the particular
system with corresponding signs.

An approximation to the solution, when the zero ampli-
tude fixed point is unstable and finite amplitude fixed point is
stable, is a travelling ‘‘kink.’’ It is possible to imagine a
situation in which there are two such kinks of opposite wave
number. Since they have opposite wave number, they have
opposite velocities as well, thus, they will move towards !or
away from" one another, and they will eventually merge
!within a system with periodic boundary conditions". Close
to the merging point, the dynamical systems method is no
longer valid. This is one of the possible scenarios akin to
wave collapse in this system.

Also, it is possible to consider the amplitude equation for
the viscous case #i.e., !30"$ as an equation to be satisfied only
in the boundary layer, required by the rapid changes in the
derivatives of the solution for the inviscid problem. From
this perspective, using linearly stable modes for the inviscid
case, but linearly unstable modes for the viscous case can be
justified since the linearly unstable modes should be more or
less concentrated around the tip of the modulational enve-
lope, and they will ultimately be balanced by the nonlinear
and dissipative dynamics that are considered in this section.
In general, it should be possible to construct a ‘‘global’’ so-
lution of the problem by matching the solutions in these
different layers. In particular, it is possible to find a more
general ‘‘thorn’’ solution from !26", by replacing the layer
around the inflection point by a constant ‘‘fixed point’’ solu-
tion of the viscous problem. In fact, the viscous part of the
solution would oscillate around the fixed point since the
matching condition is not exact, leading to production of
shear. Notice that such a solution is possible only if the ve-
locity of the ‘‘thorn’’ is set by the dissipative dynamics.
Modulations that are moving too fast probably disintegrate.
The same idea about matching solutions in different layers,
can also be applied to the periodic solutions of the inviscid

problem. Thus, from the modulational perspective, the pic-
ture of a streamer arises as a compound nonlinear structure,
made up of a shear layer and its vicinity.

VI. DISCUSSION

As a result of the modulational instability method that
we used, we obtained relatively simple, approximate analyti-
cal equations that describe the evolution of ETG/TR fluctua-
tions, which interact coherently with a mean flow. The gen-
eral structure of Zakharov equations, which describe the
nonlinear evolution of Langmuir waves, and predict wave
collapse, also ‘‘persists’’ in ETG/TR case.

The central result of this paper is the derivation of an
amplitude equation, which has a Lagrangian structure for the
inviscid case. This leads to identification of the large scale
secondary instability of the fluctuation amplitude to infini-
tesimal perturbations. Using this amplitude equation we have
constructed a family of nonlinear travelling wave solutions
and a localized ‘‘thorn’’ solution. Most importantly, using the
Hamiltonian structure of this equation it was possible to
identify the conditions for the wave collapse in this system
!i.e., prove a Talanov theorem". This is an essential result of
the paper since it predicts that a sufficiently localized mean
flow will trap more and more ETG fluctuations, leading to a
finite time singularity. Formation of such singular layers is
important for explaining the excess of electron thermal trans-
port. The specific conditions for the collapse, and a basic
estimation for the collapse time are also given in the text.

The parameter values, for which the wave collapse oc-
curs, can be identified as the basin of attraction for the gen-
eration of a one dimensional small scale flow. Notice that,
this basin is not only defined as a range for the physical
parameters of the small scale mode !r, kx , and ky) but also
defined as a range for the Hamiltonian, which is a measure of
the field energy. This means that the potential well for the
ETG fluctuations that result from initial mean flow seeds,
should be deep enough so that it can trap fluctuations. Since
the mean flow is driven by the fluctuations, this corresponds
to having sufficient initial field energy.

The zonal flow, another anisotropic convective cell state
with ky→0, which is neglected in this analysis may also be
present as another attractor, in which case the system may
oscillate in a chaotic manner between these two attractor
states. It is therefore important to identify which one is the
stronger attractor, for the ETG case, and what are the differ-
ential effects of physical phenomena that are neglected in
this simple picture. This issue will be addressed in a future
publication.

Similarly, derivation of the evolution equation for the
viscous case leads to a special case of generalized complex
Ginzburg–Landau equation. Using the dynamical systems
approach we have identified the fixed points of this equation
and conditions for their linear stability. The analysis of the
viscous case allows the possibility of constructing the
streamer as a compound nonlinear structure made up of a
dissipative shear layer and its inviscid vicinity. In practice,
numerical solutions are possible for both cases and can be
compared with direct simulation results to test the model.
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Notice that, the form of equations that we have derived,
would be relevant for the zonal flows and streamers of
Hasegawa–Mima-type drift dynamics !with absolute or
modulational growth, as can easily be shown", if a com-
pletely adiabatic electron response can be assumed. The form
of !18" is a consequence of the complete adiabatic ion re-
sponse.

The role of the decaying branch in the ETG dynamics
has not yet been fully confronted. This can be approached
via two nonlinearly coupled amplitude equations using the
framework developed here. Even in the weak turbulence
limit, the role of this coupling can be important, especially
near marginality. Therefore it needs to be investigated thor-
oughly. Many of the ideas that are developed in this paper
can, in principle, be carried over to two dimensions. This is
important since a meaningful estimation of the radial scale of
the streamer as a nonlinear large scale structure, and of the
resulting transport, can only be made when the radial satura-
tion mechanism is thoroughly understood.
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APPENDIX: COEFFICIENTS OF THE AMPLITUDE
EQUATIONS

The parameter ; that is used in !18" can be found by
substituting !16" and !17" into !11",

;"
kx
2

!28!1%k2"#ky"

&! !8!1%2k2"#kyvgy"!r!8#vgyky"#282kyvgy"
!r#vgy!1#vgy""82

#2ky
2$ .

The parameters for the viscous case can also be found in a
parallel manner, except that in this case, (8L0 !whose in-

verse correspond to W and D" and the operator representing
the nonlinearity !corresponding to ' and =" are complex.
Using the condition of marginality !i.e. P282%k4
"R0ky

2/k2) and the dispersion relation for further simplifica-
tion,

W"
P!Sky#2P8!1%k2")

P2!28!1%k2"#Sky"2%k4!1%k2%Pk2"2
,

D"
k2!1%k2%Pk2"

P2!28!1%k2"#Sky"2%k4!1%k2%Pk2"2
,

'"
2P2k4!8!1%2k2"#vgyky"

P!S#vgy)#R0

kx
2

ky
2 ,

="#
2P2k8!P#1%1 "
P!S#vgy)#R0

kx
2

ky
2 .
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